Medical Laboratory Science and Phlebotomy Technician Policy Handbook
Table of Contents

Introduction to Hennepin Healthcare School of Laboratory Science ... 1
 About Hennepin Healthcare and HCMC ... 1
 Laboratory Program Accreditation and Licensing 1
 Affiliated Universities ... 2
 Hennepin Healthcare School of Laboratory Science Administration3
 Hennepin Healthcare Phlebotomy Technician Program Faculty 4
 Hennepin Healthcare MLS Program Faculty ... 4
 School of Laboratory Science Policies ... 7
 Equipment and Resources .. 7
 Library Resources .. 7
 Classroom Resources .. 7
 Dress code .. 7
 School Calendar .. 8
 Grades and Standards of Performance .. 10
 Student Records ... 10
 Program Specific Information ... 12
 The Phlebotomy Technician Program .. 12
 Applying to the Phlebotomy Technician Program 13
 Phlebotomy Technician Program Tuition Policies 18
 Phlebotomy Technician Program Goals and Competencies 20
 Phlebotomy Schedule of Activities .. 22
 The Medical Laboratory Science Program .. 25
 Applying to the MLS Program ... 25
 MLS Program Tuition Policies ... 33
 Course Descriptions .. 35
 MLS Program Goals and Competencies ... 38
 Medical Laboratory Science Schedule .. 43
Introduction to Hennepin Healthcare School of Laboratory Science

About Hennepin Healthcare and HCMC

With HCMC, a 484 bed hospital, Level 1 Adult and Pediatric Trauma Center and the adjacent Clinic and Specialty Center, the Hennepin Healthcare campus is at the heart of medical care in downtown Minneapolis.

Hennepin Healthcare has a long tradition of medical education since HCMC’s establishment as the first teaching hospital in Minnesota. HCMC serves as a major teaching hospital for resident physicians, medical students, nurses, and other members of the health care team; collaborates and affiliates with other hospitals and educational institutions to fulfill its education responsibilities, and ensures that all of its graduate medical education programs meet the requirements of the Accreditation Council for Graduate Medical Education and individual Residency Review Committees where applicable. GME staff members facilitate the work of the hospital GME Committee and provide overall administration of the GME Program.

HCMC currently offers free-standing residency programs and fellowships that provide 280 resident physicians with clinical experience serving a broad mix of patients from diverse cultural and socio-economic backgrounds. These patients are drawn primarily from a population area of one million which includes the City of Minneapolis.

Hennepin Healthcare and HCMC Laboratories provide comprehensive laboratory services in Clinical and Anatomic Pathology. The state-of-the-art laboratories are staffed by more than 180 FTEs, plus 10 medical staff members (pathologists/PhDs), who perform and analyze more than 3 million lab tests per year. The central lab supports several ancillary labs (off-site and on-site clinics and point-of-care settings), offering student’s outstanding educational environments in both large and small laboratory settings.

Labratory Program Accreditation and Licensing

The laboratory programs at Hennepin Healthcare are conducted under the guidelines of the National Accrediting Agency for Clinical Laboratory Sciences (NAACLS). NAACLS is an international agency for accreditation and approval of educational programs in the medical laboratory sciences and related health professions. During the most recent accreditation visit in 2016 the Medical Laboratory Science Program was awarded accreditation through April, 2027 and the Phlebotomy Technician Program was awarded approval through April, 2022.
The Hennepin Healthcare School of Laboratory Science includes the Medical Laboratory Science program and the Phlebotomy Technician Program. It is licensed as a private career school with the Minnesota Office of Higher Education pursuant to Minnesota Statutes, sections 136A.821 to 136A.832. Licensure is not an endorsement of the institution. Credits earned at the institution may not transfer to all other institutions.

Minnesota Office of Higher Education
1450 Energy Park Drive, Suite 350
St Paul, MN 55108-5227

Affiliated Universities

The Hennepin Healthcare School of Laboratory Medicine MLS program is affiliated with 5 area universities and works closely with these affiliates to coordinate our student’s education. The Phlebotomy Technician program does not require students to be associated with a specific college or university.

Minnesota State University, Mankato
Mankato, MN 56001
Program Director: Lois Anderson, M.A., MT (ASCP)
(507) 389-2417

St. Cloud State University
St. Cloud, MN 56301
Program Director: Louise Millis MS, MLS (ASCP)CM
320-308-5438

University of Wisconsin - LaCrosse
La Crosse, WI 54601
Program Director: Michael A. Lazzari, DHEd, MS, MLS (ASCP)CM
608-785-6479

Winona State University
Winona, MN 55987
Program Director: Lisa Jordan, MS, MT (ASCP)CM SM
507-457-2993
S T U D E N T P O L I C I E S

Michigan Technological University
Houghton, MI 49931
Program Director: Karyn A. Fay, MS, MT (ASCP) SH
906-487-2254

Hennepin Healthcare School of Laboratory Science Administration

Sarah Drawz, MD, PhD Program Medical Director
B.A., Amherst College, Amherst, MA
PhD, Case Western Reserve University, Cleveland, OH
MD, Case Western Reserve University, Cleveland, OH
sarah.drawz@hcmed.org

Marianne Knutson, MBA, MT (ASCP)
Laboratory Manager
MBA Ashford University, San Diego, CA
BS Minnesota State University – Mankato, Mankato, MN
MT (ASCP) Hennepin County Medical Center, Mpls, MN
Marianne.knutson@hcmed.org

Lynn Poth, MS, MT (ASCP)
Lab Education Program Director
M.S, University of North Dakota, Grand Forks, ND
B.S., University of Texas/El Paso, El Paso, TX
MT (ASCP), William Beaumont Army Medical Center and Providence Hospital, El Paso, TX
lynn.poth@hcmed.org
Hennepin Healthcare Phlebotomy Technician Program Faculty

Lynn Poth, MS, MT (ASCP)
Lab Education Program Director/Instructor
M.S, University of North Dakota/Grand Forks, Grand Forks, ND
B.S., University of Texas/El Paso, El Paso, TX
MT (ASCP), William Beaumont Army Medical Center and Providence Hospital, El Paso, TX
lynn.poth@hcmed.org

Karen Nelson, MT (ASCP)
Phlebotomy Supervisor
B.A., University of Missouri, St Louis, MO
MT(ASCP) Westmoreland Hospital, Greensburg, PA
Karen.nelson@hcmed.org

Hennepin Healthcare MLS Program Faculty

Taylor Nelson, MLS (ASCP)CM
Medical Lab Scientist - Immunohematology
B.S., Augsburg College, Minneapolis, MN
MLS (ASCP), Essentia Health & HCMC Community Clinics
taylor.nelson@hcmed.org

Katie Carlson, MLS (ASCP)CM
Medical Lab Scientist - Chemistry/Urinalysis
B.S., Minnesota State University Mankato, Mankato, MN
MLS (ASCP), HCMC
katie.carlson@hcmed.org
Johanna Henly, MLS (ASCP)CM
Medical Lab Scientist – Microbiology
B.S., University of Minnesota, Minneapolis, MN
MLS (ASCP), United, Medtox, and North Memorial
johanna.henly@hcmed.org

Aaron Lambert, MLS (ASCP)CM, MB
Team Lead – Molecular Diagnostics
B.S., University of Nebraska, Omaha, NE
MB (ASCP), Avera McKennan Hospital, Sioux Falls, SD
aaron.lambert@hcmed.org

Lisa Totzke, MLS (ASCP)CM
Medical Lab Scientist – Hematology/Coagulation
B.S., Minnesota State University Mankato, Mankato, MN
MLS (ASCP), HCMC
lisa.totzke@hcmed.org

Ashley Tessier, MLS (ASCP)CM
Medical Lab Scientist – Immunology
B.S., St Cloud State University, St. Cloud, MN
MLS (ASCP), HCMC
ashley.tessier@hcmed.org

Lynn Poth, MS, MT (ASCP)
Lab Ed. Program Director – Phlebotomy & Management/Ed
M.S, University of North Dakota, Grand Forks, ND
B.S., University of Texas/El Paso, El Paso, TX
MT (ASCP), William Beaumont Army Medical Center and
Providence Hospital, El Paso, TX
lynn.poth@hcmed.org

James Parkin, MT
Medical Technologist – Manual Hematology Instructor
Retired – Education only
james.parkin@hcmed.org
Ashley Meyers, MLS (ASCP)CM
Medical Technologist – Toxicology Instructor
B.S., Minnesota State University Mankato, Mankato, MN
MLS (ASCP), St. Luke’s Hospital
ashley.meyers@hcmed.org
School of Laboratory Science Policies

Equipment and Resources

Library Resources

The laboratory has current references available for students to check out if needed.

The main hospital library, located on the red skyway level, is open to all Medical Center staff and students. Students are encouraged to become familiar with and utilize the facilities.

Classroom Resources

Students enrolled in programs within the School of Laboratory Science have access to the following facilities, equipment, and resources as needed for their individual school.

1. HCMC Laboratory Conference rooms are utilized as space for lectures. Rooms are fully equipped with computers and audiovisual equipment for presentations.

2. Venipuncture practice blocks are available for practice prior to live blood collection.

3. Students utilize all phlebotomy equipment in the Outpatient blood collection areas for live patient draws under the guidance of phlebotomy preceptors.

4. Students utilize the blood collection carts and other inpatient blood collection equipment to gain phlebotomy skills under guidance of phlebotomy preceptors in the inpatient units.

5. MLS Program - The automated analyzers and equipment in our clinical laboratory space along with reagents are available for student practice and use.

Dress code

Students represent the laboratory to patients, visitors, and other hospital employees. Our policies state that clothing and shoes must be clean, neat appearing, without excessive wear, appropriate, and safe for the duties performed. Please dress professionally.

1. Students are NOT permitted to wear denim jeans (any color), shorts, sweatpants, mini-skirts, skin-tight clothing, exposed shoulder, midriff, or cleavage.
2. Shirts, T-shirts, and sweatshirts with pictures, sayings, and logos are not acceptable.

3. Students are **NOT** permitted to wear any open-toed shoes or sandals.

4. Lab coats will be provided for student safety and protection. Scrubs will not be provided but are acceptable attire with a lab coat worn over them. Ceil blue scrubs are not permitted. Any other color is acceptable as long as entire color sets are not worn. Many areas of the hospital have color-specific scrubs, grape is the color for our phlebotomy staff.

5. Long hair must be tied up or back. This is a safety requirement.

6. Cologne, perfume, scented lotions, or body wash are not to be worn in patient care areas or the laboratory.

7. Only minimal jewelry should be worn for safety and infection control reasons. Dangle earrings must be 1 inch or shorter.

8. Facial piercing must be limited to one piercing with jewelry (not including ears). Students may be required to cover visible tattoos if considered inappropriate.

9. No artificial fingernails are allowed. Natural fingernails must be kept short, clean and healthy; no longer than ¼ inch past the fingertip in order to stay in compliance with hospital Infection Control policies. This policy is enforced to protect Hennepin Healthcare patients.

School Calendar
The calendar for the 2019/20 school year is tentative and subject to change.
Grades and Standards of Performance

The Hennepin Healthcare School of Laboratory Science programs utilizes the following percentages and correlating letter grades. A grade of C or above is considered satisfactory and must be maintained.

<table>
<thead>
<tr>
<th>Percent grade</th>
<th>Letter grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%-100%</td>
<td>A</td>
<td>Excellent</td>
</tr>
<tr>
<td>80%-89%</td>
<td>B</td>
<td>Good</td>
</tr>
<tr>
<td>70%-79%</td>
<td>C</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>60%-69%</td>
<td>D</td>
<td>Unsatisfactory</td>
</tr>
<tr>
<td><60%</td>
<td>F</td>
<td>Unsatisfactory</td>
</tr>
</tbody>
</table>

Final grades are based on the following:

- Technical ability and performance (practical exams and evaluations)
- Behavioral evaluations
- Exams and quizzes on formal lecture material and/or bench objectives

Students in all programs are required to maintain a minimum cumulative grade a C in both the lecture and clinical practice portions of their courses. Satisfactory scores (as defined by each section or evaluation form) must also be earned on certain key exams, practical exams, and/or Behavioral/Technical evaluations.

Students completing pre-requisite courses for the MLS program are required to earn a C or better in each of the pre-requisites in order to enter the program.

Student Records

The Program Director will hold progress conferences regularly with students to monitor progress and provide feedback as they progress through the program.

Updated grades are provided to students regularly in each of their areas of study. Some areas grades are continuously available to students in real time through a Learning Management System. Midterm transcripts are provided to MLS students and their home universities as documentation of progress.

Upon graduation from their program students are provided with an official transcript of their final grades with credits earned (if applicable) and a certificate of completion. Grades and credits earned
by students in the MLS program are provided to the Program Director at the student’s home university. The home university will post the grades reported by HCMC to the student’s official university transcripts.

Student files containing admission materials, evaluation documents, pertinent counseling and advising records, certificates earned and attendance records, as well as grades and credits earned (if applicable) are maintained while the student is in the program and for 2 year following their graduation.

Documentation of the student’s legal name at the time of attendance, grades and credits earned (if applicable), the certificate of completion with dates of admission and completion, and pertinent counseling/advising notes will be kept on file indefinitely at the school.
Program Specific Information

The Hennepin Healthcare School of Laboratory Science is home to two laboratory programs.

The Phlebotomy Technician Program

The Phlebotomy Technician Program is a twelve-week clinical experience in medical terminology, quality assurance and legal concerns, safety and infection control, specimen processing, point-of-care testing, anatomy and physiology of the circulatory system, and venipuncture, arterial puncture, and skin puncture techniques. Students are also introduced to the healthcare environment, other healthcare professionals, and the use of electronic medical records. Lectures, laboratory demonstrations, and technical evaluation are utilized for the learning process. The academic portion of the program exceeds the required 40 hours.

After initial experience with artificial phlebotomy practice blocks, students receive individualized instruction as they learn and work with clinical instructors. The first few weeks are concentrated in the outpatient setting. During weeks five through twelve, they spend at least four hours per day drawing in both the inpatient and outpatient settings. The inpatient experience includes intensive care units, burn unit, pediatrics and newborn units in a very busy Level I Trauma Center. The clinical experience is documented to exceed the required 100 hours and the required 100 successful unaided collections. There is also a focus on patient interactions and providing an excellent outcome and experience for our patients and their families.

This course is currently offered twice each year, once beginning in January and once beginning in September with students selected through a competitive application process.

Upon completion of the program, graduates earn the HCMC Phlebotomy Technician certificate. This is not contingent on passing a certification examination.

Students are then eligible to take the national certification examination of the American Society for Clinical Pathology (ASCP) Board of Certification. The pass rate for this exam for Hennepin Healthcare phlebotomy program graduates in the last three years is 100%. Although job placement is not provided to graduates, in the last three years 100% of HCMC phlebotomy graduates have been employed following graduation.
Applying to the Phlebotomy Technician Program

Applications for one of the 2 classes held each year are due two months prior to the first day of class. For the September class, applications are due on **July 15**. For the January class, applications are due on **November 15**.

Prospective students should review the job expectations for the Medical Laboratory Field and the qualifications for the HCMC Phlebotomy Technician program prior to beginning the application process. A signed statement indicating understanding of these requirements is required as part of the application process.

EXPECTATIONS FOR THE PHLEBOTOMY TECHNICIAN JOB FIELD

Prospective students must be able to satisfy the Technical Standards and Essential for the Phlebotomy Technician program and job field at HCMC based on existing skills and abilities, or through the use of corrective devices. The Technical Standards are listed below.

<table>
<thead>
<tr>
<th>Phlebotomy Technical Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Standards represent the essential non-academic requirements of the program. All applicants would be expected to be able to do the following upon completion of the Program requirements:</td>
</tr>
<tr>
<td>1. Perform phlebotomy skills.</td>
</tr>
<tr>
<td>2. Perform specified laboratory procedures that require manual dexterity.</td>
</tr>
<tr>
<td>4. Read, understand, and perform tasks from written procedures.</td>
</tr>
<tr>
<td>5. Distinguish color changes on indicators.</td>
</tr>
<tr>
<td>6. Follow Standard Precautions at all times to decrease risk to the individual.</td>
</tr>
<tr>
<td>7. Follow Safety Guidelines to protect the individual.</td>
</tr>
<tr>
<td>8. Follow regulations in regard to patient confidentiality.</td>
</tr>
<tr>
<td>9. Communicate with patients.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phlebotomy Essential Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>The positions available in the field of medical laboratory science may require all combinations of the following physical, sensory, and environmental conditions:</td>
</tr>
<tr>
<td>RARELY: (Less than once or twice per week)</td>
</tr>
<tr>
<td>Exposure to radiation (Dependent upon type of procedures)</td>
</tr>
<tr>
<td>Toxic/caustic chemical exposure</td>
</tr>
<tr>
<td>Fumes/Odors/Noxious smells from various types of specimens</td>
</tr>
<tr>
<td>OCCASIONALLY: (0-2.5 hours per day)</td>
</tr>
<tr>
<td>Carrying less than ten pounds</td>
</tr>
</tbody>
</table>
Climbing stairs
Stooping/bending
Reaching below shoulder

Far Vision (>20+ feet)
Simple grasping

FREQUENTLY: (Total of 2.5-5.5 hours per day)

Walking
Standing
Sitting
Hand-arm controls
Static neck positions
Hearing oral information over phone

Carrying negligible amounts of weight
Talking in person or by telephone
Pushing and pulling
Fine motor skills
Writing
Fine manipulation
Keying/Typing/computer screen navigation

CONSTANTLY: (>5.5 hours per day)

Blood Borne Pathogen Exposure
Standard Precautions are followed to decrease risk and protect the employee.

Seeing
1. Near Vision (Reading 20 inches or less)
2. Depth Perception
3. Color Vision

Phlebotomy Work Situations

The following work situation factors may be present:

1. Hygiene/appearance demands
2. Possible shift work (dependent upon position)
3. Customer/public contact
4. Reading
5. Writing
6. Mathematics
7. Attentiveness duration - maintaining alertness
8. Attentiveness intensity - concentration
9. Short term memory
10. Long term memory
11. Working under specific instructions (No independent action or judgement)
12. Ability to problem solve
13. Transferring knowledge to unique situations
14. Performing multiple tasks concurrently
15. Attaining precise set limits, tolerance, and standards (precision)
16. Working under time constraints
17. Perceive pertinent detail in objects, make visual comparisons and discriminations

APPICANT QUALIFICATIONS

Prospective students must be 18 years of age or older.

High school graduation or the equivalent is required in order to apply to the program. College courses and related healthcare experience is not required, but is preferred. Official transcripts sent directly to the Program Director from the College (or High School if no college work has been completed) are required.

No transfer credits are accepted. No credit will be granted for any previous training or related instruction. The entire course must be completed with passing scores to receive a certificate of completion.

Prospective students must be fluent in English in both verbal and written form.

APPICATION AND SELECTION PROCESS

The application and selection process occurs in several phases that begin with submission of a fully completed Phlebotomy Technician Program application form. The ability to follow detailed directions correctly and completely is an essential characteristic when determining suitability for the phlebotomy profession. A complete application is a requirement for admission and students with incomplete applications will not be considered for an interview.

Application forms are available from the HCMC Program Director, or by download directly from the Hennepin Healthcare website at www.hennepinhealthcare.org/labeducation.

Documents – The following documents should be submitted to the HCMC Program Director by the deadline for the desired term to be considered for admission to the HCMC Phlebotomy Technician Program. The deadlines are July 15 for the term starting in September, and November 15 for the term starting in January.

1. A complete application form, including signature form and biographical sketch. The biographical sketch should include a statement of interest in the program.
2. **Official transcripts** must be sent directly to the HCMC Program Director from **all colleges previously attended**. If no colleges have been attended, official High School transcripts or GED transcripts should be sent directly to the Program Director from the school or institution.

International students who have no college or high school transcripts from the United States may submit documentation of high school graduation and/or national secondary examinations from other countries.

If documentation of previous education is not available, TABE or ACUPLACER scores may be accepted as an alternative. HCMC does not administer these exams, but can assist prospective students in locating a site for testing.

<table>
<thead>
<tr>
<th>Academic Area</th>
<th>TABE (Test of Adult Basic Education) Minimum Score Requirements</th>
<th>Acuplacer Minimum Score Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reading</td>
<td>10th grade or higher</td>
<td>78+</td>
</tr>
<tr>
<td>Math/Arithmetic</td>
<td>10th grade or higher</td>
<td>31+</td>
</tr>
</tbody>
</table>

3. **Two Letter of Recommendation forms** from people familiar with your work or academic performance sent directly to the Program Director in a sealed envelope. Recommendations can be obtained from previous instructors or supervisors from work or volunteer settings.

Phlebotomy Interview Phase

After the application deadline, applicants who meet the criteria established above will be asked to schedule an interview. Interviews will be conducted over approximately 3 weeks following the application deadline at HCMC.

Phlebotomy Selection Phase

Applicants are selected based on their Grade Point Average (or test scores), previous experience in health care and autobiography, letters of recommendation, and the interview. The weight that each of these items has in the selection process is determined based on a rating form developed by the HCMC Education Committee.
Weight value by category

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade point average (or test scores)</td>
<td>10%</td>
</tr>
<tr>
<td>Previous experience in healthcare and autobiography</td>
<td>10%</td>
</tr>
<tr>
<td>Letters of recommendation</td>
<td>30%</td>
</tr>
<tr>
<td>Interview</td>
<td>50%</td>
</tr>
</tbody>
</table>

Prospective Students will be notified of the outcome of the application process within 2 weeks after the interviews are completed. If a seat is offered to a student, acceptance is required in writing in order to hold the seat until classes begin.

FINAL PROGRAM ENTRY REQUIREMENTS

Prior to entry in the Phlebotomy Technician Program, additional requirements must be completed to satisfy state and hospital requirements and obtain clearance for direct patient contact.

Phlebotomy - MN Department of Human Services Background Study

Students must complete a Minnesota Department of Human Services background study (as required by Minnesota state law) and receive clearance for direct patient contact. Instructions on completion of the background study will be provided to accepted students. It must be completed and clearance received prior to the first day of class.

Phlebotomy Entrance Health Assessment

Prior to entering the program, the Program Director and, if necessary, HCMC’s Employee Occupational Health and Wellness (EOHW) will review the student’s health insurance status and vaccination records. No exit physical is required following completion of the program.

Students are required provide documentation of the following:

1. **Color Blindness:**

 Color blindness testing will be performed during the first week of class.

2. **Medical Insurance:**
Hennepin healthcare does not provide individual hospitalization or medical insurance. The student must be covered for medical insurance and show policy numbers, company, and effective dates.

3. **Required Mantoux:**
 Documentation of a Tspot/quantiferon gold test within one year or Mantoux TB skin test and follow-up within 6 months of starting the program.

4. **Required Vaccinations:**
 Documentation of 2 Mumps, 2 Rubella, 2 Rubeola, and 2 Varicella (chickenpox) vaccinations and/or titer as indicated.

5. **Recommended Vaccination:**
 Hepatitis B vaccination is highly recommended. It should be started at least 4 weeks prior to starting at HCMC.

6. **Vaccination against Influenza**
 Flu shots are available for students. If a student does not receive the flu shot, they will be required to wear a mask, per hospital policy, during flu season.

If the student’s records are not complete, any lab tests, X-rays, or vaccinations will be billed to the student’s insurance.

Please note: incomplete records may result in not being allowed to start the training until they are complete.

Phlebotomy Technician Program Tuition Policies

The following policies are in place to provide information about the student’s rights and responsibilities with regard to tuition for the Hennepin Healthcare Phlebotomy Technician program.

PHLEBOTOMY TECHNICIAN TUITION AND FEES

Expenses include tuition of $2,000.00 and the purchase of a textbook for approximately $80.00. Students have the option of purchasing a Metro Transit Student pass through the school for approximately $165.00 which provides unlimited use of public transportation while
enrolled in the program. Payments can be made in one lump sum or utilizing the payment schedule below.

<table>
<thead>
<tr>
<th>Payment is due On or before:</th>
<th>Item</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>First day of class</td>
<td>Tuition</td>
<td>$700.00</td>
</tr>
<tr>
<td></td>
<td>Textbook</td>
<td>~$ 80.00</td>
</tr>
<tr>
<td></td>
<td>Optional - Metro Transit Student Pass</td>
<td>~$165.00</td>
</tr>
<tr>
<td>Friday of week 4</td>
<td>Tuition</td>
<td>$700.00</td>
</tr>
<tr>
<td>Friday of week 8</td>
<td>Tuition</td>
<td>$600.00</td>
</tr>
</tbody>
</table>

Failure to pay amounts due will be cause for termination or your program and forfeiture of all amounts previously paid.

This program is not eligible for Federal Student Aid through the US Department of Education.

If your application is rejected, you will receive a full refund of all tuition, fees, and other charges. You will be entitled to a full refund of tuition, fees, and other charges if you give notice that you are cancelling your enrollment within five days of being accepted into the school or program. This five-day refund policy applies regardless of when the program starts. If you give notice more than five days after you have been accepted into the school or program (or first lesson for an online distance education program), you will receive a refund of all tuition, fees, and other charges minus 15%, up to $50, of the total cost of the program. You will be provided a prorated tuition, fees, and other charges refund minus a 25%, up to $100 administrative if you give notice of your withdrawal after your program has begun, but before 75% program has completed. If you withdraw from your program after 75% of the program has completed, you are not entitled to a refund of tuition, fees, and other charges.

You will receive written notice acknowledging your withdraw request within 10 business days after receipt of the notice and you will receive a refund of any tuition, fees, and other charges within 30 business days of receipt of your withdrawal. Written notice is effective of the date of the postmark if sent by mail or the day it has been hand-delivered to the institution. If you do not withdraw in writing or contact the institution about your absence,
and you have not attended your program for 21 consecutive days, you will be considered to have withdrawn from the school as of your last date of attendance.

Transfer Credit/ Credit for Prior Experience Policy

Transfer credits from previous phlebotomy training programs or previous phlebotomy work experience are not accepted by the Hennepin Healthcare Phlebotomy Technician program.

All students must complete the entire course and earn passing scores/evaluations in order to receive the HCMC certificate of completion.

The certificate awarded for successful completion of the Hennepin Healthcare Phlebotomy program is not intended to be transferred to another institution of higher learning as transfer credit. The decision to award transfer credit or to not award transfer credit at another institution for work done in the Phlebotomy Program at HCMC is at the sole discretion of the other institution.

Phlebotomy Technician Program Goals and Competencies

PHLEBOTOMY TECHNICIAN GOALS

The Hennepin Healthcare Phlebotomy Technician Program will:

1. Provide high-quality instruction that will produce a graduate of the program who is competent in the theory and practice of phlebotomy.
2. Provide the environment necessary to enable each student to develop and demonstrate professionalism and concern for the patient in the daily practice of phlebotomy.
3. Provide a curriculum that will enable each student to:
 A. Acquire and develop competence in the technical skills and theory necessary for the performance of phlebotomy
 B. Participate in clinical experiences that will fulfill requirements in the following areas:
 1) Phlebotomy
 2) Specimen collection and processing
 3) Point-of-Care testing
 C. Register for a national board of certification examination.
 D. Function effectively as a responsible phlebotomist upon completion of the
PHLEBOTOMY TECHNICIAN PROGRAM INFORMATION

program.
4. Provide instructors who are well qualified and motivated.
5. Develop and use valid testing and evaluation mechanisms.
6. Employ a variety of instructional methods and materials.

PHLEBOTOMY TECHNICIAN COMPETENCIES

Students graduating from the Hennepin Healthcare Phlebotomy program will be able to achieve the following competencies.

1. Demonstrate knowledge of the structure of healthcare systems and their regulatory agencies.
2. Demonstrate knowledge of Medical Terminology.
3. Demonstrate understanding of the circulatory and nervous systems as they relate to specimen collection.
4. Demonstrate knowledge of basic disease states, their associated body systems, and their relationship to major areas of the clinical laboratory.
5. Demonstrate understanding of infection control and safety.
6. Demonstrate understanding of the importance of specimen collection and specimen integrity to the delivery of patient care.
7. Demonstrate understanding of and the ability to use basic blood collection equipment.
8. Demonstrate understanding of blood collection tube additives and their impact on specimen integrity and testing in the major areas of the laboratory.
9. Demonstrate the ability to follow standard operating procedures in blood collection.
10. Demonstrate understanding of requisitioning, specimen transport, and specimen processing.
11. Demonstrate understanding of quality assurance and quality control.
12. Demonstrate the ability to communicate effectively and appropriately in a healthcare setting.

PHLEBOTOMY TECHNICIAN PROGRAM SCHEDULE

The Phlebotomy Technician program incorporates 12 weeks of course-work and training. Students will be scheduled off during major holidays if those holidays fall within the class period. See the school calendar for anticipated days off during the 2019/20 school year.

The program combines classroom instruction with skills practice on artificial blood collection simulation devices and blood collection from live patients under the close supervision of professional phlebotomy staff.
Class is generally held Monday thru Friday for 8 ½ hours each day throughout the program. The hours of the program vary depending on scheduled activities, but are set to occur during hospital day shift hours. It is essential that students have the flexibility to accommodate fluctuations in hours including early morning start times. Students are expected to be present and on time for each class day.

Classroom time focuses on one or more of the program competencies each week. These are noted in the Schedule of Activities. Competencies are listed one or more times as a lecture focus within the Schedule of Activities, but are practiced and assessed throughout the program in both the classroom and hands on practice settings.

Phlebotomy Schedule of Activities

<table>
<thead>
<tr>
<th>Weeks</th>
<th>Anticipated attendance hours Monday thru Friday *Subject to change due to staffing or other considerations</th>
<th>Expected Blood Collection Activities (During attendance hours when not in the classroom)</th>
<th>Expected Classroom time</th>
<th>Lecture Focus Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7:00am-3:30 pm</td>
<td>Outpatient blood collection</td>
<td>Orientation – 3 days Classroom – 6 hrs</td>
<td>1, 5, 7, and 12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Competency 1 - Demonstrate knowledge of the structure of healthcare systems and their regulatory agencies. Competency 5 - Demonstrate understanding of infection control and safety. Competency 7 - Demonstrate understanding of and the ability to use basic blood collection equipment. Competency 8 - Demonstrate understanding of and the ability to use basic blood collection tube additives and their impact on specimen integrity and testing in the major areas of the laboratory. Competency 12 - Demonstrate the ability to communicate effectively and appropriately in a healthcare setting.</td>
</tr>
<tr>
<td>2</td>
<td>9:00am-3:30 pm</td>
<td>Outpatient blood collection</td>
<td>Classroom – 6 hrs</td>
<td>7, 8, and 9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Competency 7 - Demonstrate understanding of and the ability to use basic blood collection equipment. Competency 9 - Demonstrate the ability to follow standard operating procedures in blood collection.</td>
</tr>
<tr>
<td>3</td>
<td>9:00am-3:30 pm</td>
<td>Outpatient blood collection</td>
<td>Classroom – 3 hrs</td>
<td>7, 8, and 9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Competency 7 - Demonstrate understanding of and the ability to use basic blood collection equipment. Competency 9 - Demonstrate the ability to follow standard operating procedures in blood collection.</td>
</tr>
<tr>
<td>4</td>
<td>9:00am-3:30 pm</td>
<td>Outpatient blood collection</td>
<td>Classroom – 6 hrs</td>
<td>2, 6, 9, 10, and 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Competency 2 - Demonstrate knowledge of Medical Terminology.</td>
</tr>
<tr>
<td>Competency 6</td>
<td>Demonstrate understanding of the importance of specimen collection and specimen integrity to the delivery of patient care.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Competency 10</td>
<td>Demonstrate understanding of requisitioning, specimen transport, and specimen processing.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Competency 11</td>
<td>Demonstrate understanding of quality assurance and quality control</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 5 | 9:00am-3:30 pm | Outpatient and Inpatient blood collection | Classroom – 3 hrs | 3, 4, and 9 |

| Competency 4 | Demonstrate knowledge of basic disease states, their associated body systems, and their relationship to major areas of the clinical laboratory. |

| 6 | Students rotate through start times on a weekly basis 4:00am-12:30pm 5:00am-1:30pm | Outpatient and Inpatient blood collection | Classroom – 3 hrs | 3, 4, and 9 |

| Competency 3 | Demonstrate understanding of the circulatory and nervous systems as they relate to specimen collection. |

| 7 | Students rotate through start times on a weekly basis 4:00am-12:30pm 5:00am-1:30pm | Inpatient Blood Collection | Classroom - 3 hrs | 9 and 10 |

| Competency 10 | Demonstrate understanding of requisitioning, specimen transport, and specimen processing. |

| 8 | Students rotate through start times on a weekly basis 4:00am-12:30pm 5:00am-1:30pm | Inpatient Blood Collection | Classroom – 6 hrs | 6, 9, and 11 |

Competency 6	Demonstrate understanding of the importance of specimen collection and specimen integrity to the delivery of patient care.
Competency 10	Demonstrate understanding of requisitioning, specimen transport, and specimen processing
Competency 11	Demonstrate understanding of quality assurance and quality control

| 9 | Students rotate through start times on a weekly basis 4:00am-12:30pm 5:00am-1:30pm | Inpatient Blood Collection | Classroom – 3 hrs | 9, 10, and 11 |

| Competency 10 | Demonstrate understanding of requisitioning, specimen transport, and specimen processing. |

| 10 | Students rotate through start times on a weekly basis 4:00am-12:30pm 5:00am-1:30pm | Inpatient Blood Collection | Classroom – 6 hrs | 1, 6, 7, and 9 |

| Competency 6 | Demonstrate understanding of the importance of specimen collection and specimen integrity to the delivery of patient care. |
| Competency 7 | Demonstrate understanding of and the ability to use basic blood collection equipment. |
Additional training time outside of regularly scheduled hours is generally not available and must be approved in advance by the Program Director. Evening enrichment training may be arranged to fill specific curriculum needs, but will be arranged to fit student’s individual schedules. There are no regularly scheduled student weekend hours.

<table>
<thead>
<tr>
<th></th>
<th>Students rotate through start times on a weekly basis</th>
<th>Inpatient Blood Collection</th>
<th>None</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>4:00am-12:30pm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5:00am-1:30pm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Students rotate through start times on a weekly basis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4:00am-12:30pm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5:00am-1:30pm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thursday & Friday are Presentation and Graduation days – No Inpatient Blood Collections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Competency 12 - Demonstrate the ability to communicate effectively and appropriately in a healthcare setting.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Medical Laboratory Science Program

The Medical Laboratory Science Program is a nine-month clinical internship with intensive study in chemistry (including toxicology and instrumentation), coagulation, hematology, immunohematology (blood bank), immunology, microbiology (including parasitology, mycology, mycobacteriology, and virology), urinalysis, management, and education. Each area includes practical laboratory experiences, lectures and/or workshops, self-instruction learning modules, patient case studies, and exams.

Students receive individualized instruction as they learn and work with teaching technologists in the laboratory. Students perform tests on patient blood and body fluid specimens and, under supervision, report results.

This program begins in September of each year and ends in May with students selected through a competitive application process.

Upon completion of the program, graduates receive a certificate that is not contingent on passing a certification examination. Graduates are then eligible to take the national certification examination of the American Society of Clinical Pathology (ASCP) Board of Certification. The pass rate for this exam over the last three years has been 100%.

Applying to the MLS Program

Applications for each September class must be completed during the summer and fall of the previous year. For example, students who wish to begin in September of 2020 should submit their application and prepare to interview in the summer and fall of 2019.

Prospective students should review the job expectations for the Medical Laboratory Field and the qualifications for the HCMC MLS program prior to beginning the application process. They will be required to sign a statement that they understand the technical standards and essential functions as part of their application.

Additionally, a tour is required prior to applying to the program so that students can see the facilities first-hand and have the chance to ask any questions they may have. A large group tour is held during the late spring of most years which allows students the opportunity to interact with current students and faculty as well as tour the facility. While students are encouraged to take advantage of the larger group tour in the spring, students who are unable to attend on that day will be provided the opportunity to attend smaller, more individualized tours during the summer months.
EXPECTATIONS FOR THE MEDICAL LABORATORY SCIENCE JOB FIELD

Prospective students must be able to satisfy the Technical Standards for the Medical Laboratory Science program at HCMC based on existing skills and abilities, or through the use of corrective devices. The Technical Standards are listed below.

MLS Technical Standards

Technical Standards represent the essential non-academic requirements of the program. All applicants would be expected to be able to do the following upon completion of the Program requirements:

1. Utilize a microscope to identify cells, structures, and organisms.
2. Perform phlebotomy skills.
3. Perform various pipetting techniques using:
 a. Serological pipets
 b. Volumetric pipets
 c. Micropipettors
 d. Re-pipettors
4. Operate laboratory instruments and perform basic quality control and preventative maintenance on laboratory instruments.
5. Perform specified laboratory procedures that require manual dexterity.
7. Apply basic mathematical calculations to practical lab situations.
8. Read, understand, and perform laboratory testing from written procedures.
9. Distinguish color changes in cells and testing pads.
10. Follow Standard Precautions at all times to decrease risk to the individual.
11. Follow Safety Guidelines to protect the individual.
12. Communicate with patients.

MLS Essential Functions

The positions available in the field of medical laboratory science may require all combinations of the following physical, sensory, and environmental conditions:

RARELY: (Less than once or twice per week)

- Exposure to radiation (Dependent upon type of procedures)
- Toxic/caustic chemical exposure
- Fumes/Odors/Noxious smells from various types of specimens

OCCASIONALLY: (0-2.5 hours per day)

- Walking
- Carrying less than ten pounds
- Climbing stairs
Stooping/bending
Far Vision (>20+ feet)
Simple grasping
Pushing/Pulling

Reaching below shoulder

FREQUENTLY: (Total of 2.5-5.5 hours per day)

- Standing
- Sitting
- Hand-arm controls
- Static neck positions
- Talking to co-workers in person or by telephone
- Hearing oral information over phone
- Carrying negligible amounts of weight
- Fine manipulation
- Other fine motor skills
- Writing
- Keying/Typing

CONSTANTLY: (>5.5 hours per day)

Blood Borne Pathogen Exposure

Standard Precautions are followed to decrease risk and protect the employee.

Seeing

4. Near Vision (Reading 20 inches or less)
5. Depth Perception
6. Color Vision

The following work situation factors may be present:

1. Hygiene/appearance demands
2. Possible shift work (dependent upon position)
3. Customer/public contact
4. Reading
5. Writing
6. Mathematics
7. Weighing and/or measuring
8. Attentiveness duration - maintaining alertness
9. Attentiveness intensity - concentration
10. Short term memory
11. Long term memory
12. Working under specific instructions (No independent action or judgement)
13. Ability to problem solve
14. Transferring knowledge to unique situations
15. Directing, controlling, or planning activities of others
16. Evaluating performance of others
17. Performing multiple tasks concurrently
18. Showing capacity for self-expression
19. Working alone or apart, in physical isolation, from others
20. Attaining precise set limits, tolerance, and standards (precision)
21. Working under time constraints
22. Perceive pertinent detail in objects, make visual comparisons and
discriminations and see slight differences in shapes and shadings of
drawings.
23. Observe differences in copy, proofread works and numbers, and
avoid perceptual errors in arithmetic computation

APPLICANT QUALIFICATIONS

Prospective students must be at least 18 years of age.

Students must be enrolled in the MLS program and have completed at least
1 semester at one of the following 5 affiliated universities:

1. St Cloud State University - St Cloud, MN
2. Minnesota State University - Mankato, MN
3. Winona State University - Winona, MN
4. University of Wisconsin - La Crosse, WI
5. Michigan Technological University - Houghton, MI

MLS GPA Requirements

Students must have both a cumulative GPA and science GPA of 2.6 or
higher to be eligible for the program. Calculations to determine GPA will
be done using all grades earned, including grades for courses that were
repeated for a higher grade during a later semester.

MLS Pre-requisites

To qualify for HCMC’s Medical Laboratory Science Program, the following classes
or their equivalents must be completed prior to entry into the program. It is
expected that

1. **Biological Sciences**: A minimum of 16-semester credits is required. The
required courses are general biology, hematology, immunology,
microbiology, anatomy/physiology, genetics/molecular biology.
Recommended courses include an introduction to medical laboratory science, medical or pathogenic microbiology, parasitology, and virology.

2. **Chemistry**: A minimum of 16-semester credits is required. The required courses are general chemistry and organic or biochemistry. Recommended courses include analytical chemistry and instrumentation.

3. **Mathematics**: A college math course is required. Remedial math courses are not acceptable. In addition to a college math course, statistics is required, either as a separate course or included in a relevant course (e.g. biostatistics or analytical chemistry)

4. **Required pre-clinical courses**: hematology with lab experience and immuno-hematology with lab experience. Introduction to clinical chemistry and urinalysis are highly recommended

5. **Suggested electives**: physics, computer science, education courses, business administration

In addition to the basic qualifications listed above, applications will be evaluated based on the following additional requirements.

1. Students must have completed a minimum of 1 semester at the affiliated university prior to submitting an application.

2. Student records should demonstrate the student’s ability to be successful in the internship setting. Patterns of past performance such as excessive withdrawals or repeating of courses during the student’s college career will be considered in the decision to advance students to the interview phase.

3. Sufficient coursework must be completed prior to application to demonstrate that the remainder of the coursework can successfully be completed prior to entry into the program. A general guideline is that approximately 32 semester credits or less should be in progress or planned for the final year before entering the HCMC internship.

APPLICATION AND SELECTION PROCESS

The application and selection process occurs in several phases that begin with submission of a **fully completed** MLS Program application form. The ability to follow detailed directions correctly and completely is an essential characteristic when determining suitability for the laboratory science profession. A complete application is a requirement for admission and students with incomplete applications will not be considered for an interview.
Application forms are available from affiliated universities (in the MLS/CLS/MT Program), the HCMC program director, or by download directly from the Hennepin Healthcare website at www.hennepinhealthcare.org/labeducation.

MLS Application phase

Documents—The following must be submitted by **October 15** to be considered for admission to the HCMC Medical Laboratory Science Program:

1. A **complete application form**, including signature form and biographical sketch.
2. An **application fee** in the amount of $50.00 is required. Make checks payable to "HCMC MLS Program"
3. **Official transcripts** must be sent directly to the HCMC program director from all universities and/or colleges attended.

 This includes not only the university students are currently enrolled in, but also any other colleges that were previously attended.
4. **Two Letter of Recommendation forms** from people familiar with your academic work. The letter of recommendation form is located at the end of the application form.

 One recommendation should be from a science professor and the second from affiliated university’s MLS/CLS/MT program director.

HCMC tour – Required by October 1:

Tours are required as part of the application process. No tours will be scheduled after October 1. Students may tour the fall, spring, or summer prior to applying. Please contact the Program Director for scheduling.

MLS Interview phase

After **October 15**, students who meet the criteria established above will be asked to schedule an interview. Interviews will be conducted through mid-November at HCMC in the clinical laboratory.

MLS Selection phase

Applicants are selected based on their cumulative and science GPA’s, previous experience in health care and autobiography, letters of recommendation, and the interview. The weight that each of these items has in the selection process is determined based on a rating form developed by the HCMC Education Committee.
Weight value by category

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cumulative GPA</td>
<td>5%</td>
</tr>
<tr>
<td>Science GPA</td>
<td>5%</td>
</tr>
<tr>
<td>Previous experience in healthcare and autobiography</td>
<td>10%</td>
</tr>
<tr>
<td>Letters of recommendation</td>
<td>30%</td>
</tr>
<tr>
<td>Interview</td>
<td>50%</td>
</tr>
</tbody>
</table>

Students will be notified in writing by **December 15th** of the outcome of the application process. If a seat is offered to a student, acceptance in writing is required to hold the seat until classes begin.

FINAL PROGRAM ENTRY REQUIREMENTS

Prior to entry into the program, students must complete all remaining courses listed in the pre-clinical curriculum or their equivalent at an affiliated university with letter grades of C or better in each course. The pre-clinical curriculum consists of the biological science, chemistry, mathematics, and pre-clinical courses listed under Admission Requirements.

Students must also complete the HCMC pre-clinical competency objectives for each major laboratory area. Students demonstrate their readiness for the program through responses to each of the stated objectives. The responses will be evaluated for completeness by the HCMC faculty. Feedback will be provided to both students and their affiliated university in order to plan for improvements in the university curriculum.

Updated Pre-Clinical competency objectives, along with instructions on their completion, will be provided to accepted students in late spring for each upcoming fall program start. Further instructions on their completion will be provided at that time.
Students must complete a Minnesota Department of Human Services background study (as required by Minnesota state law) and receive clearance for direct patient contact.

Prior to entering the program, the Program Director and, if necessary, EOHW will review the student’s health insurance status and vaccination records. No exit physical is required following completion of the program.

Students are required to provide documentation of the following:

1. **Color Blindness:**
 Color blindness testing will be performed during the first week of class.

2. **Medical Insurance:**
 Hennepin healthcare does not provide individual hospitalization or medical insurance. The student must be covered for medical insurance and show policy numbers, company, and effective dates.

3. **Required Mantoux:**
 Documentation of a Tspot/quantiferon gold test within one year or Mantoux TB skin test and follow-up within 6 months of starting the program.

4. **Required Vaccinations:**
 Documentation of 2 Mumps, Rubella, Rubeola, and Varicella (chickenpox) vaccinations and/or titer as indicated.

5. **Recommended Vaccination:**
 Hepatitis B vaccination is highly recommended. It should be started at least 4 weeks prior to starting at HCMC.

6. **Vaccination against Influenza**
 Flu shots are available for students. If a student does not receive the flu shot, they will be required to wear a mask, per hospital policy, during flu season.

If the student’s records are not complete, any lab tests, X-rays, or vaccinations will be billed to the student’s insurance.
Please note: Incomplete records may result in not being allowed to start the training until they are complete.

MLS Program Tuition Policies

The following policies are in place to provide information about the student’s rights and responsibilities with regard to tuition for the Hennepin Healthcare MLS program.

Program costs listed in this policy manual do not include any costs or fees required by the student’s home university for awarding credits earned at HCMC or for conferring the student’s final degree. The costs listed below reflect only those costs incurred by attending the Hennepin Healthcare MLS program.

COST OF THE PROGRAM

All MLS students pay tuition. It may be billed differently depending on the agreement between HCMC and the home university of the student. Some students pay HCMC directly, while other students pay tuition to their home university. Students who pay tuition to their home University are paying HCMC tuition through a contractual reimbursement provision between the university and HCMC. The language of that provision specifies that a percentage of the tuition paid by the student will be provided to HCMC. The percentage is dependent on the current contract between these 2 entities and the payment is invoiced and remitted automatically to HCMC by the home university.

Students who pay HCMC directly can expect to be billed a total of $6500.00 in tuition for the 2019-20 class year. Tuition is payable in 2 installments of $3250.00 each at the start of each term, fall and spring. Additional fees will be billed to the student by the university.

Students who pay tuition directly to their university will not be directly billed for tuition by HCMC, but will continue to follow their universities billing procedures for tuition and fees.

Expenses include the following:

- Tuition
- Copy fee
- Textbooks
- Paper, binders, and other materials
• Certification exam application fee
• Personal costs including food, housing, clothing, transportation (see Metro Transit Student Pass option below), and parking.
• Access to a personal computer and the internet is highly recommended

EXPENSE DUE DATES AND COSTS

<table>
<thead>
<tr>
<th>Dates</th>
<th>Item</th>
<th>Amount</th>
<th>Payable to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior to the program start date</td>
<td>Textbooks</td>
<td>~$700.00</td>
<td>University bookstore or other book seller</td>
</tr>
<tr>
<td>September 3, 2019</td>
<td>Fall Copy Fee</td>
<td>$40.00</td>
<td>Hennepin Healthcare</td>
</tr>
<tr>
<td></td>
<td>Fall Tuition (for students paying HCMC directly)</td>
<td>$3250.00</td>
<td>Hennepin Healthcare</td>
</tr>
<tr>
<td></td>
<td>Optional – Fall Metro Transit Student Pass</td>
<td>~$165.00</td>
<td>Hennepin Healthcare</td>
</tr>
<tr>
<td>January 2, 2020</td>
<td>Spring Copy Fee</td>
<td>$40.00</td>
<td>Hennepin Healthcare</td>
</tr>
<tr>
<td></td>
<td>Spring Tuition (for students paying HCMC directly)</td>
<td>$3250.00</td>
<td>Hennepin Healthcare</td>
</tr>
<tr>
<td></td>
<td>Optional - Spring Metro Transit Student Pass</td>
<td>~$165.00</td>
<td>Hennepin Healthcare</td>
</tr>
<tr>
<td>April 15, 2020</td>
<td>ASCP Board of Certification exam application fee</td>
<td>~$240.00</td>
<td>ASCP Board of Certification</td>
</tr>
</tbody>
</table>

Failure to pay amounts due will be cause for termination from the program and forfeiture of all amounts previously paid.

MLS Program Financial Assistance

Eligibility and disbursement of Federal Student Aid through the US Department of Education and other forms of financial assistance is accessed through and handled by the home university. This is true whether students pay HCMC tuition directly or through their home university.

MLS Program Refund Policy/ Buyers Right to Cancel

If your application is rejected, you will receive a full refund of all tuition, fees, and other charges. You will be entitled to a full refund of tuition, fees, and other charges if you give notice that you are cancelling your enrollment within five days of being accepted into the school or program. This five-day refund policy applies regardless
of when the program starts. If you give notice more than five days after you have been accepted into the school or program (or first lesson for an online distance education program), you will receive a refund of all tuition, fees, and other charges minus 15%, up to $50, of the total cost of the program. You will be provided a prorated tuition, fees, and other charges refund minus a 25%, up to $100 administrative if you give notice of your withdrawal after your program has begun, but before 75% program has completed. If you withdraw from your program after 75% of the program has completed, you are not entitled to a refund of tuition, fees, and other charges.

You will receive written notice acknowledging your withdraw request within 10 business days after receipt of the notice and you will receive a refund of any tuition, fees, and other charges within 30 business days of receipt of your withdrawal. Written notice is effective of the date of the postmark if sent by mail or the day it has been hand-delivered to the institution. If you do not withdraw in writing or contact the institution about your absence, and you have not attended your program for 21 consecutive days, you will be considered to have withdrawn from the school as of your last date of attendance.

All Students, regardless of laboratory background, will complete the full scheduled rotation time. If a student demonstrates academic and technical competence in a specific area, additional objectives for educational enrichment may be assigned.

Courses completed within the MLS program are accepted by the students affiliated university as described in the Affiliation Contract between HCMC and the school. Grades earned at HCMC for those courses will be posted to that universities transcripts. Transferability of coursework to other schools is determined by the home university.

Course Descriptions

CLINICAL CHEMISTRY

6-9 credits (dependent on requirements of the home university)

This course will provide the instruction and skill training necessary for entry level work in clinical chemistry. Lectures and workshops focus on the identification and diagnostic testing of commonly identified chemical analytes found in blood and body fluid, how those analytes interact with the body, and the associated disease states. The student will rotate through chemistry benches during Core I and Core II. During each rotation, students will practice automated sample analysis, quality
control, and other aspects of bench work under the guidance of a bench instructor. Concepts from lecture will be reinforced during bench rotations.

CLINICAL MICROBIOLOGY

7-10 credits (dependent on the requirements of the home university)

This course will provide the instruction and skill training necessary for entry level work as a microbiologist. Lectures and workshops focus on the identification and diagnostic testing of bacterial pathogens, susceptibility testing, and associated body sites and diseases. The student will rotate through microbiology benches during Core I and Core II. During each rotation, students will practice staining, ID and susceptibility testing, quality control, and other aspects of bench work including automation under the guidance of a bench instructor and independently with unknowns. Concepts from lecture will be reinforced during bench rotations. This course includes mycology, parasitology, virology, and molecular diagnostics.

HEMATOLOGY/COAGULATION

4-7 credits (dependent on the requirements of the home university)

This course will provide the instruction and skill training necessary for entry level work as a hematologist. Lectures and workshops in the hematology portion of the course will focus on the identification and testing of the cellular elements of the blood and bone marrow, their role in the body, and the correlation between abnormalities and disease states. The coagulation portion will cover coagulation factors and hemostasis, diagnostic testing methods, and the associated disease states. Students will rotate through hematology and coagulation benches during Core I and Core II. During each rotation, students will practice automated sample analysis, automated and manual cell identification, quality control, and other aspects of bench work under the guidance of a bench instructor. Concepts from lecture will be reinforced during bench rotations.

IMMUNOHematology/Transfusion Services

3-6 credits (dependent on the requirements of the home university)

This course will provide instruction and skill training necessary for entry level work as a Transfusion Services Technologist. Lectures and other learning modules for Immunohematology will focus on blood and blood components, the antigens and antibodies of importance in blood transfusion, diagnostic testing methods and interpretation of tests, and problem resolution. Students will rotate through
Immunohematology bench rotations during Core I and Core II. During each rotation, students will practice automated and manual sample analysis and blood component selection, quality control, and other aspects of the bench work under the guidance of a bench instructor. Concepts from lecture will be reinforced during bench rotations.

IMMUNOLOGY

2-3 credits (dependent on the requirements of the home university)

This course will provide instruction in clinical immunology that will serve as background information for other areas and will prepare students for entry level work in areas of the lab that utilize immunologic techniques. Lectures and workshops in this course will focus on antigens and antibodies, diagnostic testing methods for immunology, and associated disease states. Students will participate in automated and manual immunology testing under the guidance of a bench instructor in several areas of the laboratory as a part of those bench rotations.

MANAGEMENT/EDUCATION

1-3 credits (dependent on the requirements of the home university)

This course provides instruction in topics related to laboratory management and education within the clinical laboratory. Lectures and projects in this course will focus on regulatory agencies and their role in quality systems, management theory including supervisory and workplace planning concepts, and education theory including instructional methods and the creation of objectives and test questions.

URINALYSIS

0-3 credits (dependent on the requirements of the home university – may be part of the Chemistry grade)

This course will provide instruction in Urinalysis that will prepare students for entry level work in areas of the lab that perform urinalysis and microscopy techniques. Lectures and workshops in this course will focus on urines chemical and cellular constituents, diagnostic testing methods, and associated disease states. Students will participate in automated and manual urinalysis testing, quality control, and other aspects of bench testing under the guidance of a bench instructor.
MLS Program Goals and Competencies

MLS PROGRAM GOALS

The Hennepin Healthcare MLS Program will:

1. Provide high-quality instruction that will produce an MLS who is competent in the theory and practice of medical laboratory science.
2. Provide the environment necessary to enable each student to develop and demonstrate professionalism and concern for the patient in the daily practice of medical laboratory science.
3. Provide a curriculum that will enable each student to:
 A. Acquire the theory and technical skills needed to competently perform the procedures included in each clinical course.
 B. Participate in clinical experiences that will fulfill requirements in the following areas:
 1) Chemistry
 2) Hematology
 3) Coagulation
 4) Immunology
 5) Microbiology
 6) Molecular diagnostics
 7) Immunohematology (blood bank)
 8) Urinalysis
 9) Phlebotomy/specimen collection and processing
 10) Laboratory management and education
 C. Be eligible and prepared to register for a national board certification examination of the profession.
 D. Function effectively as a responsible MLS upon completion of the program.
4. Provide instructors in all areas who are well qualified and motivated.
5. Develop and use valid testing and evaluation mechanisms.
6. Employ a variety of instructional methods and materials.

MEDICAL LABORATORY SCIENCE COMPETENCIES

Students graduating from the Hennepin Healthcare MLS program will be able to achieve the following competencies within each course.

1. Demonstrate knowledge of specimen collection and storage procedures, including proper apparatus, appropriate technique, patient and sample identification, patient status, and test considerations.
2. Evaluate the suitability of specimens for analysis and determine the optimal method of analysis for all analytes.
3. Relate laboratory theory, terms, and abbreviations to practical work.
4. Perform laboratory tests and laboratory quality control and quality assurance procedures, including confirmatory or corrective action procedures indicated by abnormal results.
5. Evaluate validity and diagnostic significance of test results, correlation with other test results and conditions of the patient, and need for additional tests.
6. Identify limitations and appropriate uses of tests.
7. Transmit results to appropriate areas manually and by computer.
8. Identify and demonstrate the principles of laboratory safety including chemical, electrical, and fire hazards and blood borne pathogen policies as dictated by regulatory agencies.
9. Demonstrate professional conduct (seek feedback, show initiative, confidence, composure, punctuality, and progress) and interpersonal communication skills with patients, laboratory personnel, other health care professionals, and with the public.
10. Apply basic scientific principles in learning new techniques and procedures.
11. Relate laboratory findings to disease processes.
12. Integrate and relate laboratory data generated by various laboratory sections in making judgements regarding possible discrepancies.
13. Perform and complete assigned tasks in an organized and efficient manner within the allotted time, with minimal supervision.
14. Recognize and solve problems relating to pre-analytic, analytic and post-analytic phases of laboratory work.
15. Use laboratory equipment including glassware, balance, manual and automated pipets.

MLS - Hematology/Coagulation

1. Describe, identify and discuss function of cellular components of blood, bone marrow, and body fluids.
2. Correlate cells and test results with disease states.
3. List factors and steps in coagulation scheme.
4. For routine and special hematology and coagulation procedures:
 A. describe principles of procedures and reactions
 B. apply mathematical calculations
 C. perform procedures including:
 a. automated cell counting
 b. manual cell counts on blood (WBC and platelets)
 c. microscope use and maintenance
d. differentials, normal and abnormal, on blood and body fluids

e. coagulation testing on optical density and mechanical instruments

f. routine and confirmatory manual tests
g. meet established turn-around times

5. For specified instrumentation and equipment:
 A. describe principle of operation and key components
 B. perform preventative and corrective maintenance and repairs
 C. identify instrumental and technical causes of unexpected results
 D. troubleshoot all instrument malfunctions
 E. perform necessary calibrations

MLS - Chemistry

1. For specified clinical chemistry procedures:
 A. describe principles of procedures and reactions
 B. apply mathematical calculations to practical laboratory situations
 C. perform procedures including:
 a. spectrophotometry
 b. electrophoresis and densitometry
 c. enzyme immunoassay
 d. ion selective electrode applications
 e. blood gas analysis and oximetry
 f. osmometry
 g. discrete and random access automated analysis
 D. meet established turn-around times

2. For specified instrumentation and equipment
 A. describe principle of operation and key components
 B. perform preventative and corrective maintenance and repairs
 C. identify instrumental and technical causes of unexpected results
 D. troubleshoot instrument malfunctions
 E. perform necessary calibrations

MLS - Immunohematology

1. Describe, perform, evaluate, and interpret immunohematology testing necessary for blood and blood component therapy:
 A. antigen typing
 B. direct and indirect antihuman globulin test
 C. antibody identification
 D. compatibility testing
1. Describe, identify and discuss functions of the cells and organs of the immune system.
2. State immunologic principles and theory regarding antigen-antibody and cellular interactions and describe how these relate to performance and interpretation of laboratory tests.
3. For each immunologic procedure performed or demonstrated:
 A. describe principle of method
 B. follow protocol and meet turn-around-time
4. Perform or discuss procedures including:
 A. serologic screenings and titers involving flocculation and latex and RBC agglutination.
 B. precipitation methods, RID, and Ouchterlony
 C. immunoelectrophoresis/immunofixation
 D. ELISA and other immunoanalyzers
 E. direct and indirect immunofluorescence
 F. flow cytometry

E. transfusion reactions
F. elutions, adsorptions, neutralizations
G. titers

2. Discuss immunohematology principles and theory regarding antigen and antibody reactions in the major blood group systems.

3. State general health requirements of potential homologous and autologous blood donors.

4. Identify donors not meeting the requirements and state reason(s) for deferral or exclusion.

5. List the disease markers used to evaluate potential blood donors.

6. Describe blood components available for therapeutic use with regard to:
 A. preparation
 B. storage
 C. infusion
 D. indications for use
 E. leukocyte reduction methods
 F. irradiation
 G. autologous/directed donations

7. Interpret and correlate hematology and coagulation results to ensure appropriate blood component therapy in accordance with FDA and AABB requirements.

5. Instrumentation and equipment
 A. describe principle of operation and key components
 B. perform prescribed maintenance and calibration
 C. identify instrumental and technical causes of unexpected results
 D. troubleshoot malfunctions

MLS - Laboratory Management and Education

1. Present educational talks about management topics and case studies utilizing educational methodologies.
2. Distinguish among affective, psychomotor, and cognitive domains.
3. Correlate objectives and test questions with consideration to the level of instruction.
4. Prepare a resume and cover letter.
5. Distinguish between/among the following terms:
 A. mission statement, goals, objectives and tasks
 B. quality control, quality assurance, and quality improvement
 C. proficiency testing and competence assessment
 D. certification and accreditation
6. Describe characteristics and use of laboratory information systems and electronic health records.
7. Describe career advancement roles for MLS.
8. Gain familiarity with a CAP inspection checklist and other regulatory agency requirements.
9. Demonstrate/discuss principles of management, supervision, and continuing education.

MLS - Microbiology

1. Describe principles of procedures used to identify 90% of usually occurring bacteria.
2. Perform and interpret a variety of conventional and automated bacteriological bench procedures allowing for the identification of 90% of the usually occurring bacteria.
3. Perform a variety of conventional and automated susceptibility testing procedures.
4. Prepare, stain and microscopically examine and interpret clinical materials and culture isolates.
5. Perform and interpret basic mycological bench procedures allowing for the identification of 80% of the usually occurring yeasts and molds.
6. Perform concentration and staining techniques used for the identification of parasites.
7. Describe principles and procedures of molecular testing.
1. For specified procedures
 A. describe the principles and limitations of procedures
 B. perform procedures
 a. manual and semi-automated urinalysis
 b. microscopic analysis
 c. miscellaneous urinalysis tests
 d. pregnancy test
 C. identify, analyze and report physical and chemical properties and urine constituents
 D. explain the chemical reactions in routine and special tests
 E. distinguish between normal and abnormal elements found in microscopic examination
 F. recognize contaminants and artifacts
 G. identify and report fecal fat in stool

2. For specified instrumentation
 A. describe the principle of operation and key components
 B. perform preventive and corrective maintenance and repairs
 C. identify instrumental and technical causes of unexpected results
 D. troubleshoot all instrument malfunctions
 E. perform necessary quality control and calibration
 F. demonstrate correct use and maintenance of the microscope

3. Explain the structure and functioning of the urinary tract

Medical Laboratory Science Schedule

Students will be provided a tentative schedule with the anticipated dates and times of lectures, exams, and clinical experiences prior to or on the first day of class. Every effort will be made to maintain schedules as posted, but because the Hennepin Healthcare MLS program is part of a working hospital environment, patient care and staffing needs may necessitate changes to the tentative schedule. In the event changes must be made, notification of schedule adjustments to students is a priority.

The class day is 8 ½ hours long each day of the program. Use of that time varies each day based on the schedule, but generally will consist of Monday through Thursday spent on the bench engaged in learning activities with Fridays spent in classroom lecture. A ½ hour break for lunch along with another ½ hour break during the day is also included.
Start times for each day will vary depending on the scheduled activities, however, most days begin at 7:00am and end at 3:30pm. Some workshops are scheduled from 9:00am-5:30pm. Several evening shift experiences will also be scheduled with shifts from 3:30pm-11:00pm. It is possible that an overnight shift will be scheduled from 11:00pm-7:00am, however, this is not available every year. It is essential that students have the flexibility to accommodate fluctuations in hours as needed to accommodate specific learning activities. Students are expected to be present and on time for each lecture.

MLS Practicum Bench Rotations

*Approximate number of days devoted to individual bench’s during rotations.

<table>
<thead>
<tr>
<th>Bench Area</th>
<th>Days on the bench Core I (September thru December)</th>
<th>Days on the bench Core II (January thru May)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microbiology</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Molecular Diagnostics</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Transfusion Services</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Hematology</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>Chemistry</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Urinalysis</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Toxicology</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Triage/Emergency Dept.</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Evenings</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Phlebotomy</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>
MLS WORKSHOPS/LECTURES

*Approximate hours of instruction. Additional activities designed to reinforce lecture topics occur while on the practicum bench.

<table>
<thead>
<tr>
<th>Content Area</th>
<th>Hours of Workshop/Lecture in subcategories</th>
<th>Total Hours of Workshop/Lecture time per Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orientation</td>
<td>~20</td>
<td>~20</td>
</tr>
<tr>
<td>Microbiology</td>
<td>~23</td>
<td>~83</td>
</tr>
<tr>
<td>Parasitology</td>
<td>~24</td>
<td></td>
</tr>
<tr>
<td>Mycology</td>
<td>~24</td>
<td></td>
</tr>
<tr>
<td>Molecular Diagnostics</td>
<td>~12</td>
<td></td>
</tr>
<tr>
<td>Immunohematology</td>
<td>~40</td>
<td>~40</td>
</tr>
<tr>
<td>Hematology</td>
<td>~50</td>
<td>~50</td>
</tr>
<tr>
<td>Chemistry</td>
<td>~46</td>
<td>~53</td>
</tr>
<tr>
<td>Urinalysis</td>
<td>~7</td>
<td></td>
</tr>
<tr>
<td>Management/Education</td>
<td>~26</td>
<td>~40</td>
</tr>
<tr>
<td>Phlebotomy</td>
<td>~14</td>
<td></td>
</tr>
</tbody>
</table>